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Abstract 

The effect of scatterers, located in variable special 
positions, on the probability density function of the 
magnitude of the normalized structure factor has been 
investigated. Exact characteristic functions have been 
obtained for all the statistically different variable 
special positions in triclinic, monoclinic and ortho- 
rhombic space groups except in Fdd2 and in the 
space groups based on the point group 222, and the 
probability density functions have been evaluated 
from their Fourier or Fourier-Bessel series 
expansions. It is seen that the effect of heavy scat- 
terers, located in the special positions investigated, 
is very marked and should be accounted for in cases 
of space-group ambiguities. 

Introduction 

The effects of the presence of atoms in special posi- 
tions have been investigated in earlier work on 
intensity statistics (Karle & Hauptman, 1953; 
Hauptman & Karle, 1953; Collin, 1955; Hargreaves, 
1956; Sim, 1958; Foster & Hargreaves, 1963; Ilyukhin 
& Nikitin, 1963), but no exact studies of these effects 
on the probability density function (p.d.f.) of the 
structure factor have so far been attempted. One of 
the reasons for avoiding the study of special positions 
is their very large number in all the 230 space groups, 
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and consequent apparent difficulties in arriving at 
tractable and reasonably concise formulae. Since, 
however, the qualitative effects of (heavy) scatterers 
in special positions on intensity statistics may well 
be of considerable significance in the determination 
of space-group symmetry in cases of ambiguities, a 
study of such effects was thought to be of interest. 

The techniques used in this paper are similar to 
those we employed in our previous studies of intensity 
statistics, based on exact solutions of random-walk 
models (e.g. Shmueli, Weiss, Kiefer & Wilson, 1984; 
Shmueli & Weiss, 1987). Only low-symmetry space 
groups are treated, and it is seen that the number of 
different expressions that need to be developed is 
much smaller than the formal number of crystal- 
lographically different Wyckoff positions in the space 
groups investigated. The present treatment is confined 
to the variable special positions (i.e. lines and planes), 
since the contributions of scatterers located in fixed 
special positions can be calculated and subsequently 
subtracted from the (scaled) intensity; examples of 
the latter process can be found in the works of Collin 
(1955), Sim (1958), Srinivasan & Parthasarathy (1976) 
and Pradhan, Ghosh & Nigam (1985). The results 
presented in this paper encompass all the variable 
special positions in monoclinic and orthorhombic 
space groups, except those in space groups based on 
the point group 222 and in the space group Fdd2. 
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Derivation 

In order to obtain the required dependence of the 
p.d.f, on the distribution of atoms among the sym- 
metry sites, it is best to start from a general representa- 
tion of the structure factor. All the special positions 
are adequately represented by the following formula- 
tion of the normalized structure factor: 

k Nm 

E(h)=  Z am 2 nj(~'~+in~)=A(h)+iB(h), (1) 
m = l  j = l  

where the index m ranges over the types of Wyckoff 
positions, their number being k, the index j ranges 
over the Nm atoms in the ruth Wyckoff position, am 
is the occupancy factor of the ruth Wyckoff posi- 
tion, and ~:~+ir/~ is the conventional complex 
trigonometric structure factor of the j th atom in the 
ruth Wyckoff position. The occupancy factor, i.e. the 
fraction of an atom occupying a Wyckoff position, 
enables one to use trigonometric structure factors 
with numerical coefficients as given in standard refer- 
ences (e.g. International Tables for X-ray Crystallogra- 
phy, 1965). For example, the occupancy factor for an 
atom located on an n-fold axis is 1/n etc., and a,,, = 1 
characterizes general positions. Dispersion is neglec- 
ted, i.e. the normalized scattering factor nj in (1) is 
taken as a real quantity. 

The required probability density function is uni- 
variate for centrosymmetric space groups (with the 
origin at a center of symmetry), and initially bivariate 
for the non-centrosymmetric ones. We represent these 
p.d.f.'s as (single or double) Fourier series, and make 
use of the fact that the Fourier coefficients are just 
the values of the corresponding characteristic func- 
tion. This function has a property which is important 
in the present application: the characteristic function 
of a sum of random variables is a product of the 
characteristic functions of individual variables. Thus, 
if the atoms are distributed among k Wyckoff posi- 
tions, the characteristic function of the p.d.f, of A(h) 
[or the joint p.d.f, of A(h) and B(h)] is a product of 
k characteristic functions, each corresponding to one 
type of Wyckoff position. 

The characteristic function for E(h) in the cen- 
trosymmetric case becomes 

c(to,) = (exp(iwlA)) (2) 

m = l  j = l  

={m[]= exp(ito,amL" nj~'~)> (4) 
j = l  

= exp(ito,a.,nfj ) (5) 
l j = l  

k 

= I-I C.,(to,), (61 
m = l  

where 
N 

Cm(to,) = 1-I (exp(ito,amnj~)) (7) 
j = l  

is the contribution of the ruth Wyckoff position (the 
N,. atoms occupying it) to the characteristic function 
C(to~). The assumptions underlying the present deri- 
vations are that (i) the atomic phase factors, 2rrh. rj, 
are random variables which are uniformly distributed 
in the (0, 2rr) range, and (ii) the contributions of 
different atoms to the structure factor are independent 
(cf Shmueli, Weiss, Kiefer & Wilson, 1984; Shmueli 
& Weiss, 1985). 

The non-centrosymmetric case is treated similarly: 

C(to,, to2) = (exp [i( to,a + to2B )]) (8) 

= < [I ~ exp [ia,,,(tol~'~+w2rl'~)]> (9) 
m = l j = l  

k 

= 1-I Cm(to,, to2), (10) 
m = l  

where 
IN] m 

C,,(to,,to2) = I] (exp[iamnj(w,se'fl+to2rl'~)]) (11) 
j = l  

is the contribution of the mth Wyckoff position to 
the (acentric) characteristic function C(to~, to2) [note 
that E and r/ are denoted in International Tables for 
X-ray Crystallography (1965) as A and B respec- 
tively]. 

The integrals implied by the averages in (7) and 
(11) can now be evaluated in closed form for most 
space groups of low symmetry (triclinic, monoclinic 
and orthorhombic) (cf. Shmueli & Weiss, 1987), and 
their calculation is increasingly complex for higher 
symmetries. We shall therefore confine the exact 
characterization of the statistical properties of the 
special positions to the tractable systems only. The 
point groups of the special positions that are of inter- 
est are always subgroups of the point group isomor- 
phic to the space group considered, and the functional 
forms of the corresponding characteristic functions 
are identical to those found for some lower-symmetry 
space groups. Furthermore, the characteristic func- 
tions for the low-symmetry non-centrosymmetric 
space groups can usually be expressed as a function 

2 and the required p.d.f.'s can then o f  to = ( to ,  + to2),/2 
be represented as single Fourier-Bessel series rather 
than double Fourier series (e.g. Shmueli & Weiss, 
1987). Table 1 summarizes the various characteristic 
functions which are needed for the computation of 
the p.d.f.'s p([E]) for the above mentioned space 
groups. It should be pointed out that these p.d.f.'s 
depend on point groups rather than on space groups 
(¢f. Shmueli, 1982), and therefore a tabulation of the 
symmorphic groups with P-type lattices is sufficient 
for the present purpose. 
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Table 1. Atomic characteristic functions for some 
general and special positions 

The first column lists the triclinic, monoclinic and orthorhombic 
symmorphic space groups with P-type lattices which are rep- 
resentative of all the space groups of the above systems, except 
for Fdd2 and Fddd. The second column lists the types of Wyckott 
positions - descriptively rather than by their conventional notations 
- which have been considered in enumerating all the variable 
special positions in the above space groups. The third column 
contains the atomic characteristic functions to be used with 
equations (7) and (11). 

Atomic characteristic 
Space group Wyckoff position function 

PI  General Jo(tonj) 
P1 General Jo~ t°l n j) 
P2 General Jo(wnj) 

Twofold axis Jo(tonj) 
P2/ m General Jo(2Wt n j) 

Twofold axis or Jo(2tolnj) 
mirror plane 

P222 General (cf Shmueli & Weiss, 1987) 
Twofold axis ,~/J2o(2Wl nj) 

Prom2 General (2/~') Jo J~(2wnj cos 0) dO 
Mirror plane Jo(tonj) 
Twofold axis -,,-2 J°(wnJ) 

Pmmm General (2/~') Jo" jo2(4wtni cos o) dO 
Mirror plane J0(2to I nj) 
Twofold axis Jo(2totnj) 

The space groups based on the point group 222 
pose some difficulties in the computation of the p.d.f. 
of lE I for scatterers distributed among general as well 
as special positions. Problems of a similar nature have 
been found in our study of intensity statistics for 
dispersive scatterers. These are being investigated, 
and the results will be reported at a later date. 
However, there is no difficulty in correctly formulat- 
ing the atomic characteristic functions for the above 
situations. 

The above mentioned property of the characteristic 
function as product of constituent characteristic func- 
tions can also be applied to situations involving 
hypersymmetry. We examined this in the case of a 
partially bicentric distribution (Shmueli & Weiss, 
1985) in the space group P1, where the functional 
form of the Fourier coefficient was found to be that 
of a product of the Fourier coefficient for the space 
group P1 (with no hypersymmetry) (Shmueli, Weiss, 
Kiefer & Wilson, 1984) and the Fourier coefficient of 
the purely bicentric distribution for this space group 
(Shmueli, Weiss & Kiefer, 1985). Other related 
examples are being investigated. 

Results 
Theoretical p.d.f.'s based on the atomic characteristic 
functions shown in Table 1 were compared with simu- 
lated distributions of I EI in order to assess the magni- 
tude of the effect of the heavy atoms when these are 
located in special positions. The p.d.f.'s were com- 
puted for all except the space group P222, with heavy 
scatterers in general as well as special positions. The 

simulated distributions were constructed as described 
in detail by Shmueli et al. (1984), by replacing the 
atomic phase factors with computer-generated ran- 
dom numbers. The agreement between the theoretical 
and simulated distributions was found to be very good 
(as is usual for Fourier p.d.f.'s with good convergence 
properties) and we shall content ourselves with some 
graphical representations of theoretical p.d.f.'s. 

The importance of the effect studied can often be 
inferred from the analytical expressions for the atomic 
characteristic function. For example, this function for 
the space group P2, for an atom in general position, 
is J~(wnj) while the atomic characteristic function for 
an atom located on the twofold axis is Jo(wnj). Since 
IJo(x)l is always smaller than unity for x > 0  
(Abramowitz & Stegun, 1972), the effect of special 
positions is expected to be considerable for this space 
group. 

We illustrate the effects of the distribution of heavy 
scatterers among the possible types of Wyckoff posi- 
tions for the space groups P2/m and Pmm2. Fig. 
l (a)  shows the p.d.f, of IE] for a CgU asymmetric 
unit, with all the atoms occupying general positions 
of P2/m, while Fig. l(b) displays a p.d.f, of IEI for 
the same space group but with a unit cell containing 
36 C and four U atoms in general positions, and two 
symmetry-related U atoms located on a twofold axis. 
Clearly, both p.d.f.'s deviate significantly from the 
ideal centric Gaussian, but the function shown in Fig. 
l(b) is much closer to an ideal p.d.f., because it 
represents a less heterogeneous composition of the 
model structure. It should be pointed out that had 
we increased the number of C atoms in the asymmetric 
unit from nine to 49, while keeping the distribution 
of the U atoms as above, the p.d.f.'s corresponding 
to those in Fig. 1 would nearly coincide. This depen- 
dence on the number of light atoms may, however, 
differ widely from one space group to another. Far 

, / ( a )  

I I 
1 2 

IEI 

Fig. 1. Theoretical distributions for the space group P2/m. Both 
p.d.f.'s are on the same (arbitrary) scale. (a) Asymmetric unit 
CgU, all the atoms in general positions. (b) As (a) with two 
more U atoms on a twofold axis. 
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more drastic effects are predicted if all the light atoms 
are located in general positions and the heavy atoms 
in special ones. Thus, the p.d.f, in Fig. 2(b) is based 
on 36 C atoms all in the general positions and two 
U atoms located on a twofold axis of  P2/m. This 
p.d.f, is remarkably  close to that predicted for the 
space group P1, with all the atoms occupying general 
positions (cf  Shmueli et al., 1984). Note that the same 
result would be obtained if the two heavy atoms were 
located on the mirror  plane of  P2/m. Figs. 3 and 4 
illustrate similar phenomena  for the space group 
Prom2. Fig. 3 (a)  corresponds to a CgU asymmetr ic  
unit with all the atoms in the general positions of  
Prom2, Fig. 3(b) is based on the above composi t ion 
plus two U atoms located on one of  the mirrors of  
this space group,  and Fig. 3(c) rests on the atomic 
content of  Fig. 3 (a)  plus one U atom located on a 
twofold axis of  the space groQp. The unit-cell contents 
are C36U4, C 3 6 U  5 and C 3 6 U 6 ,  for the three cases, the 
last being least heterogeneous (Fig. 3b) and with a 
p.d.f, which is closest in its shape to the ideal acentric 
p.d.f. (Wilson, 1949). The effects of  heavy atoms 
occupying only special positions, the light ones 
remaining in the general positions, are here also very 
pronounced.  Thus Fig. 4(b)  is based on two U atoms 
lying in a mirror  plane of  Pmm2, with the 36 C atoms 
left in general positions, and Fig. 4(c) is based on 
the same l ight-atom content  and a single U atom in 
an ram2 position. As might have been expected,  the 
p.d.f. 's in Figs. 4(b) and (c) are very close to those 
for the space groups Pm and P1 respectively. 

The p.d.f. 's shown in the above figures are influ- 
enced by (i) atomic heterogeneity,  (ii) paucity of  the 
atoms in the asymmetr ic  unit, and (iii) functional 
forms of  the t r igonometric  structure factors (or sym- 
metry of  the atomic ar rangement ,  which determines 
these factors).  This applies to the extent of  the depar-  
ture of  the p.d.f. 's from ideal behavior  (Wilson, 1949), 

", .(a) 

b) 

I I I 
1 2 3 

let 

Fig. 2. Theoretical distributions for the space group P2/m. Both 
p.d.f.'s are on the same (arbitrary) scale. (a) As Fig. l(a), for 
comparison. (b) Unit-cell contents: 36 C atoms in general posi- 
tions, two U atoms on a twofold axis. 

as well as to the effect of  heavy scatterers in special 
positions. Thus for a fixed heterogeneity and paucity 
of  atoms, the p.d.f. 's are different for different space 
groups and site symmetries.  However,  for a given 
symmetry of  atomic a r rangement  the effects will gen- 
erally decrease for decreasing heterogeneity;  note that 
a decrease of  heterogeneity may be caused by (i) an 
increased number  of light atoms for a fixed number  
of  heavy ones, (ii) a decrease of  the atomic number  
o f t h e  heavy atom(s)  for a fixed number  of light ones, 
and (iii) an increased number  of heavy atoms for a 
fixed number  of  light ones. 

This study of  effects of  special positions on intensity 
statistics shows clearly that the exact Fourier  

(a) 

J (c) 

b) 

I I I 
1 2 3 

IEI 

Fig. 3. Theoretical distributions for the space group Prom2. The 
three p.d.f.'s are on the same (arbitrary) scale. (a) Asymmetric 
unit CgU, all the atoms in general positions. (b) As (a) with 
two more U atoms on a mirror plane. (c) As (a) with one more 
U atom on the twofold axis (ram2). 

(a) 

(c) 

(b) 

I I 
1 ~ 3 

JEI 

Fig. 4. Theoretical distributions for the space group Prom2. The 
three p.d.f.'s are on the same (arbitrary) scale. (a) As Fig. 3(a), 
for comparison. (b) Unit-cell contents: 36 C atoms in general 
positions, two U atoms on a mirror plane. (c) Unit-cell contents: 
36 C atoms in general positions, one U atom on twofold axis 
(ram2). 
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approach is capable of handling this predictable 
rational dependence. We intend to extend these 
investigations to multivariate p.d.f.'s of IE[, to be used 
in the field of direct methods. 

This research has been supported in part by grant 
No. 84-00076 from the United States-Israel Bi- 
national Science Foundation (BSF), Jerusalem, 
Israel. 
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Abstract 

POSIT is a computer program package for the deter- 
mination of the approximate structure of small 
organic molecules using known molecular fragments. 
The orientation and the translation vector of this 
fragment are determined and refined by a special 
R-value analysis. In contrast to other molecular 
replacement methods, only a few low-order strong 
reflections are needed to start the structure analysis. 
Therefore, this method is suitable for the determina- 
tion of crystal structures of small rigid or semi-rigid 
organic molecules without heavy atoms from powder 
diffraction data. CsH6N202, Mr=126" l l ,  mono- 
clinic, P2~/c, a=4.5137(7) ,  b=10.9888(12),  c=  
11.7224(9) ~ ,  fl = 97.554 (8) °, V=  576.39 (7) ~ 3 , Z =  
4, Dx = 1.453 M g m  -3, A (.Cu K a ) =  1.54178/~, /1, = 
0.987 mm -~, F(000) = 264, T-- 297 K, final R -- 0.04 

0108-7673/88/040417-05503.00 

for 165 approximate structure factors obtained from 
a powder diffraction measurement. The molecules 
were found in the diketo form. They are linked by a 
two-dimensional network of hydrogen bonds forming 
layers parallel to the yz plane. 

Introduction 

Normally, powder diffracion data are used for the 
identification of unknown crystalline samples, for 
symmetry and lattice-constant determination, for 
phase analysis and for refinement of approximately 
known structures. It is very difficult to determine an 
unknown structure because most reflections in the 
powder pattern overlap. Therefore, up to now only 
a few structures, most of them containing heavy 
atoms, have been solved from powder diffraction 
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